
15-418 Final Report

Xiangkai Zeng
xiangkaz

Matthew Lipari
mlipari

Summary

We implemented an Encoder-Decoder Neural Network in CUDA on Nvidia
GPUs. We optimized the various steps and layers of the network against naive
and CPU methods.

Background

Deep Learning and Neural Networks are becoming increasingly popular in the
areas of Machine Learning, Artificial Intelligence, Computer Vision, Natural
Language Processing and many more. However, in order to train a deep neural
network, you often need a large amount of data and time. Since many im-
plementations for neural networks involve large matrix multiplications, people
often use GPUs to train their models.

A widely used neural network structure for Natural Language Processing
and Computer Vision is called a Recurrent Neural Network. The original RNN
suffers from the gradient vanishing and the gradient exploding problem. Both
the LSTM RNN and GRU RNN have been invented to overcome the prob-
lem. Similar to other layers in neural networks, training these parts is often
time-consuming. Fortunately, different elements in the weight matrices can be
computed in parallel. Therefore, GPUs are a good way to speedup the train-
ing and testing process of neural network models. Specifically, a special type
of RNN is called Encoder-Decoder Network which is designed to address the
sequence-to-sequence problems. It consists of two RNN and the outputs of the
first RNN are the inputs to the second RNN, which makes it more complicated
to implement and parallelize. Besides that, the Encoder-Decoder could also
have a attention mechanism, which tries to attend to different outputs of the
encoder when the decoder is predicting the sequences. The attention mecha-
nism gives the model direct access to all the previous outputs so that it does
not need to rely only on the last output of the encoder. In this way, the model
has more information and therefore generally has better performance compared
to a simple Encoder-Decoder Network.

1



Model Definition

Here we define the Long Short Term Memory networks (LSTM), which is a
widely used neural network model. Note that the following formulas are taken
from http://arunmallya.github.io/writeups/nn/lstm/index.html (Listed
in the References section).

Figure 1: LSTM Network

Figure 1 shows the architecture of LSTM Network. For forward computa-
tion, essentially, at time t the LSTM computes the hidden state and cell state
based on the input, the hidden state and cell state at time t1. At time step t,
let xt be an input vector, ht−1 be the hidden state at time step t − 1, ct−1 be
the cell state at time step t− 1.

at = tanh(Wcx
t + Uch

t−1) = tanh(ât)

it = σ(Wix
t + Uih

t−1) = σ(̂it)

f t = σ(Wfx
t + Ufh

t−1) = σ(f̂ t)

ot = σ(Wox
t + Uoh

t−1) = σ(ôt)

2



Ignoring the non-linearities, we have

zt =


ât

ît

f̂ t

ôt

 =


W c U c

W i U i

W f Uf

W o Uo

×
[
xt

ht−1

]

= W × It

Then we compute the cell state ct and the hidden state ht. Here � represents
elementwise multiplication.

ct = it � at + f t � ct−1

ht = ot � tanh(ct)

For backward computation, given the previous gradient δht = ∂J
∂ht ,

∂E

∂oti
=
∂E

∂hti
· ∂h

t
i

∂oti
= δhti · tanh(cti)

∴ δot = δht � tanh(ct)

∂E

∂cti
=
∂E

∂hti
· ∂h

t
i

∂cti

= δhti · oti · (1 − tanh2(cti))

∴ δct+ = δht � ot � (1 − tanh2(ct))

Notice here J denotes the loss function and δct is computed at time step t+ 1,
which is defined later.

∂E

∂iti
=
∂E

∂cti
· ∂c

t
i

∂iti

∂E

∂f ti
=
∂E

∂cti
· ∂c

t
i

∂f ti

= δcti · ati = δcti · ct−1i

∴ δit = δct � at ∴ δf t = δct � ct−1

∂E

∂ati
=
∂E

∂cti
· ∂c

t
i

∂ati

∂E

∂ct−1i

=
∂E

∂cti
· ∂cti
∂ct−1i

= δcti · iti = δcti · f ti
∴ δat = δct � it ∴ δct−1 = δct � f t

We can see that for the above gradient, all we need to do it elementwise multi-

3



plication.
δât = δat � (1 − tanh2(ât))

δît = δit � it � (1 − it)

δf̂ t = δf t � f t � (1 − f t)

δôt = δot � ot � (1 − ot)

δzt =
[
δât, δît, δf̂ t, δôt

]T
After the above gradients, we can now define the gradients to weights.

δIt = WT × δzt

As It =

[
xt

ht−1

]
,

δht−1 can be retrieved from δIt

δW t = δzt × (It)T

Finally, we have

δW =

T∑
t=1

δW t

Besides the basic definition, we also added the attention mechanism. The at-
tention mechanism is essentially adding one extra input to the LSTM at each
time step. we denote this extra input as ci at decoding time step i. It is defined
as:

ci =

T∑
j=1

αi
jhj

αi
j =

exp a(si−1, hj)∑T
k=1 exp a(si−1, hk)

Here, a(si−1, hj) is often defined as the dot product of two vectors. Now the
input is the concatenation of xt, ht−1 and ct.

Data Structure and Key Operations

To organize and structure our network, we broke it down into several reusable
components. We utilized a matrix data structure that allowed us to convert the
matrix data from host to device memory (and the other way around) using only
a method call. We also created data structures for each type of layer in the
neural network. Each of these layers can take in an input and compute the for-
ward and backpropagation results. We also create class for each layer so that we
can access their weights and attributes easily and make our code more organized.

Within our matrix data structure, we have defined methods for every matrix
operation we need within our layers. These operations include multiplication,

4



transpose, add/subtract, concatenate, split, and element-wise multiplication.

The methods defined for each type of layer contain the bulk of our algorith-
mic complexity. Each layer can take in some input (usually a matrix or a vector)
and do the forward and backward computation. The most computationally ex-
pensive parts are the matrix operations, especially for matrix multiplication,
add/subtract, element-wise multiplication, etc. Fortunately, these operations
can be easily paralleled by GPUs, as there are few dependencies within them.

There are several dependencies in the model. First is that we cannot parallel
between time steps or layers since they depend on the previous results. We also
cannot parallel between forward and backward computation since they rely on
each other. Lastly, we cannot parallel some computations defined in LSTM as
they depend on the previous results. We can parallel most of matrix operations
and there is locality in many matrix operations. Matrix multiplication can be
sped up by SIMD execution.

Approach

We used CUDA to implement our neural network, targeting deployment on the
GHC machines. We decided on CUDA because we initially thought that many
of the operations done within our implementation could be tremendously sped
up with a large number of processors, which we found to be true.

The code we started modifying was found on github (zhfxl/CUDA-CNN).
This CNN implementation contained the matrix data type as well as struc-
tural blueprints for each of our layers. The matrix class originally contained all
of the code needed to store and transfer data from Host and Device memory.
It also had methods for matrix multiplication and multiplication with transpose.

To this class definition we added all of our additional matrix and layer op-
erations. We go into the implementation of each of these operations in detail
below. Most of these operations are executed in parallel in different threads and
warps on GPU.

Foward and Backward computation using Matrix Multipli-
cation

As we can see from our model definition, most of the forward computation
can be done using matrix multiplication. We initially tried to write a naive
kernel implementation, but then we found that we can use cuBLAS to do the
computation for us. For the backward computation, at first we thought we
could not form them as matrix multiplication problems and that we needed to
write additional CUDA kernels and copy data around. Then we figured out
that the backward computation can actually be done using matrix transpose

5



and matrix multiplication. As such, we also utilized cuBLAS to speedup the
model. Specifically, we use the cublasSgemm for the multiplication. Matrix
transpose is introduced in the next subsection.

Matrix Transpose

Originally we decided to use the cublasSgeam function from the cuBLAS library
to perform our transpose. Normally this function takes two matrices A and B,
operates on them based on some additional arguments, and sums them to some
matrix C. However, you can specify some specific parameters to instead have
the function compute the transpose of A and store that to the output matrix
C. In order to utilize this functionality, we found that we had to cudaMalloc
some temporary array to store the results of our transpose (we could not use
cublasSgeam to transpose in place).

After timing our code, we realized that cudaMalloc was taking a large
amount of time, outweighing the speedup we got by using the cublasSgeam
function. As a result of this, we modified our tranpose function to instead uti-
lize CUDA kernels. In each kernel function our thread would be responsible
for swapping elements of our matrix A[i][j] = A[j][i]. Although the cuBLAS
function itself is faster than this, we could not find a way to use the function
without cudaMalloc, so we settled for the kernel implementation, which was still
much faster than any sequential implementation.

Matrix Add/Subtract

This operation is very common in our model since we need to update our weights
and add/subtract the gradients in each iteration many times. For this function
we also used cublasSgeam. In addition to the matrices A, B and C, the function
also accepts some floats α, β, such that αA+ βB = C. By specifying α = 1, we
could pass in β = 1 or β = −1 to the function to add or subtract, respectively.

LSTM computation using Matrix Elementwise Multiplica-
tion

This operation is a frequent one in LSTM definition, both forward and backward.
For this operation we could not find any relevant cuBLAS functions, so we
decided to implement the function using CUDA kernels. Each thread would be
responsible for computing an entry in the resulting matrix, such that A[i][j] ·
B[i][j] = C[i][j].

Matrix Concatenation and Split

These two operations are used to combine and separate inputs and gradients for
the LSTM. The concatenation stacks two matrices, A and B on top of each other
to form a new matrix, C. If A has n rows and m columns and B has n′ rows and

6



m columns, C has n+n′ rows and m columns. The function implementation is
just a series of two cudaMemcpy calls that place A and B correctly into C.
Th split will take an input matrix C and split it into two matrices, A, B, such
that if we used our Matrix Concatenation function on A and B, we would get
C. This function is also implemented with a series of two cudaMemcpy calls.

Fusing Activation and Bias Kernels for Fully Connected
Layers

As part of the FullyConnected layer of the neural network, we must apply some
activation function to each element in our output matrix after forward compu-
tation. We also have some bias vector, which we must apply to each column
of our output matrix. We were able to combine these operations into a single
kernel function. Each thread is responsible for applying the activation function
to a single element of the output matrix, and then adding the corresponding
bias term to this element. This reduces the overhead of launching two different
kernels and give us some speedup.

We also use a similar kernel function in FullyConnected backpropagation.
We need access to the derivative of each element with respect to this activation
function, and we can get each in parallel using our kernel call.

Implementing Attention Mechanism

For the attention mechanism, it actually requires a batched vector dot product,
but we could not find good ways to implement it, and simply doing one vector
dot product at a time is too time-consuming. cuBLAS only provided batched
matrix multiplication and was not suitable for our task. After a deep analysis, we
found that it can actually be decomposed into element-wise multiplication with
a kernel computation and matrix addition. This is because for batched vector
dot product, it is basically element-wise product with an addition. Therefore,
we can do the element-wise multiplication first and compute the sum later in a
kernel. We can also directly modify the matrix in that kernel without doing it
separately.

Results

We measured the performance of our implementation via run time. A neural
network should aim to be as efficient as possible, so we strived for the same with
our code. In general, we tested our code with varying sizes of matrices in order
to see how much time particular sections would take. Since neural networks
must be trained on thousands and thousands of data points, correlating to very
large matrices, we felt that this was the most direct way to test whether or not
our code was as efficient as we wanted it to be.

7



We tested to see if changing the grid dimensions for each kernel function
changed our run time, but it did not. As a result, we decided to keep a stan-
dard grid size of 16 × 16 blocks per grid. Each block was then broken up into
just enough threads so that each thread could perform a computation for an
individual element in our matrix. For any kernel function aforementioned it
should be assumed that this standard holds.

All of the matrices we generated contained float values ranging from -1 to 1,
as initializing the matrices to 0 would not give us accurate run time results.

Below we will discuss various sections of our neural network and the results
we have to support why we decided on a particular implementation. We also
investigated the importance of the problem size in the Varying Batch Size

section.

Matrix Multiplication

Figure 2: Execution times for Matrix Multiplication

Matrix Dimension
Version 5000 10000 15000 20000

cuBLAS 1.19 ms 1.961 ms 3.446 ms 5.559 ms
Naive 1.756 ms 5.487 ms 11.691 ms 22.57 ms

8



From Figure 2, we can see that the cuBLAS implementation fared much
better than the naive implementation, especially with larger matrices. The
naive implementation was a kernel function call that computed one element of
the resulting matrix per thread.

Matrix Transpose

Figure 3: Execution times for Matrix Transpose

Matrix Dimension
Version 5000 10000 15000 20000

cuBLAS + cudaMalloc 466.515 ms 1480.878 ms 2726.227 ms 4264.585 ms
cuBLAS 0.578 ms 0.61 ms 0.628 ms 0.607 ms

Naive 1.034 ms 2.403 ms 4.774 ms 8.102 ms

From Figure 3, we can see the huge difference in run time when we include
the cudaMalloc call, and when we leave it out. Even though the cuBLAS func-
tion call itself is much faster than the naive implementation, we cannot use the
cuBLAS call without cudaMalloc, so we were forced to use the naive implemen-
tation (the naive implementation is a kernel function where each thread swaps
corresponding indices by the definition of matrix transpose).

9



The reason that cudaMalloc takes so much time is because we are allocating
memory for such a huge matrix. If we were strictly dealing with smaller matrices,
we may have found favorable results for using cuBLAS. Since we want our
neural network to efficient for very large matrices, we have to use the naive
implementation.

Matrix Addition/Subtraction

Figure 4: Execution times for Matrix Addition/Subtraction

Matrix Dimension
Version 5000 10000 15000 20000

cuBLAS 1.082 ms 1.93 ms 3.356 ms 5.272 ms
Naive 1.734 ms 5.477 ms 11.688 ms 22.552 ms

Figure 4 shows us that the cuBLAS implementation of matrix addition is
faster than the naive implementation. The naive implementation is a kernel
function where each thread computes the sum of a specific index in the resulting
matrix.

10



Varying Batch Size

Figure 5: Run time with varying Batch Sizes

Batch Size
Computation 5000 10000 15000 20000

Forward .104 ms .205 ms .474 ms .953 ms
Backward .196 ms .404 ms 1.099 ms 2.506 ms

Overall .305 ms .613 ms 1.578 ms 3.464 ms

Figure 5 does not necessarily show any optimizations, we simply wanted to
see how our implementation would scale given an increased batch size. In this
context, Batch Size represents the number of input matrices our LSTM layer
computed. Our results show that the runtime scales linearly with Batch Size,
which is what we expected. This means that we could feed in as much data as
possible to our LSTM without fear of losing any performance.

Our speedup was limited by the inherent dependencies of the Encoder-
Decoder neural network. There are a number of dependencies within the net-
work. The first of which is between the forward and backpropagation steps.
In order to run backpropagation, we need to have the results from forward
propagation.

11



We have similar dependencies between layers. Our network is made from a
sequence of layers, each feeding their output into the next as input. Without
the output of the previous layer, the current layer has nothing to compute. This
is another dependency which we really cannot do anything about. As such, we
were forced to look for parallelism within each of the layers.

Even within the layers we have some dependencies. There are several com-
putations that rely on the results of other computations (most notably within
the LSTM layer, computation of the cell state ct, seen on page 3).

Our performance is also reduced by the number of memory operations we
have to perform. We are constantly allocating memory for various matrices
and accessing individual entries in these matrices, and most of them are global
memory access. The performance lost to memory accesses only increases as we
scale the size of our inputs. There are likely things we could do to improve the
number or the manner of our accesses, but even an optimal implementation will
still be less than ideal.

References

zhxfl, CUDA-CNN, (2017), GitHub repository,
https://github.com/zhxfl/CUDA-CNN

Arun Mallya, LSTM, GitHub repository,
http://arunmallya.github.io/writeups/nn/lstm/index.html/

Distribution of Credit

We believe that credit should be distributed evenly for this project (50-50). We
worked together simultaneously on most parts of the project, but we’ve listed
some individual tasks below.

Xiangkai
Matrix Element-wise Multiplication
Encoder-Decoder Layer with
Attention Mechanism

Matthew
Matrix Concat/Split
Run time Analysis

12


